It’s no secret that Google has developed its own custom chips to accelerate its machine learning algorithms. The company first revealed those chips, called Tensor Processing Units (TPUs), at its I/O developer conference back in May 2016, but it never went into all that many details about them, except for saying that they were optimized around the company’s own TensorFlow machine-learning framework. Today, for the first time, it’s sharing more details and benchmarks about the project. If you’re a chip designer, you can find all the gory glorious details of how the TPU works in Google’s paper . The numbers that matter most here, though, are that based on Google’s own benchmarks (and it’s worth keeping in mind that this is Google evaluating its own chip), the TPUs are on average 15x to 30x faster in executing Google’s regular machine learning workloads than a standard GPU/CPU combination (in this case, Intel Haswell pro...
IT Minds is the part of sukanisoft and is software development company. Which provides the development training and recruitments.